Model Checking. Part II
نویسندگان
چکیده
منابع مشابه
Model Checking. Part II
(Def. 1) CastNatx = { x, if x is a natural number, 0, otherwise. Let W1 be a set. A sequence of W1 is a function from N into W1. For simplicity, we use the following convention: k, n denote natural numbers, a denotes a set, D, S denote non empty sets, and p, q denote finite sequences of elements of N. Let us consider n. The functor atom. n yields a finite sequence of elements of N and is define...
متن کاملModel Checking . Part II Kazuhisa Ishida Shinshu University Nagano , Japan
(Def. 1) CastNatx = { x, if x is a natural number, 0, otherwise. Let W1 be a set. A sequence of W1 is a function from N into W1. For simplicity, we adopt the following rules: k, n denote natural numbers, a denotes a set, D, S denote non empty sets, and p, q denote finite sequences of elements of N. Let us consider n. The functor atom. n yielding a finite sequence of elements of N is defined as ...
متن کاملModel Checking . Part III Kazuhisa
This text includes verification of the basic algorithm in Simple On-the-fly Automatic Verification of Linear Temporal Logic (LTL). LTL formula can be transformed to Buchi automaton, and this transforming algorithm is mainly used at Simple On-the-fly Automatic Verification. In this article, we verified the transforming algorithm itself. At first, we prepared some definitions and operations for t...
متن کاملSolutions to exercises for the Part II course Temporal Logic and Model Checking
SDIV = [0..5] × Z× Z× Z× Z (where [m..n] = {m,m+1, . . . , n}) R̂DIV (pc, x, y, r, q) (pc ′, x′, y′, r′, q′) = (pc = 0) ⇒ ((pc′, x′, y′, r′, q′) = (1, x, y, x, q)) ∧ (pc = 1) ⇒ ((pc′, x′, y′, r′, q′) = (2, x, y, r, 0)) ∧ (pc = 2) ⇒ ((pc′, x′, y′, r′, q′) = if y≤r then (3, x, y, r, q) else (5, x, y, r, q)) ∧ (pc = 3) ⇒ ((pc′, x′, y′, r′, q′) = (4, x, y, (r−y), q)) ∧ (pc = 4) ⇒ ((pc′, x′, y′, r′, ...
متن کاملSolutions to exercises for the Part II course Temporal Logic and Model Checking
SDIV = [0..5] × Z× Z× Z× Z (where [m..n] = {m,m+1, . . . , n}) R̂DIV (pc, x, y, r, q) (pc ′, x′, y′, r′, q′) = (pc = 0) ⇒ ((pc′, x′, y′, r′, q′) = (1, x, y, x, q)) ∧ (pc = 1) ⇒ ((pc′, x′, y′, r′, q′) = (2, x, y, r, 0)) ∧ (pc = 2) ⇒ ((pc′, x′, y′, r′, q′) = if y≤r then (3, x, y, r, q) else (5, x, y, r, q)) ∧ (pc = 3) ⇒ ((pc′, x′, y′, r′, q′) = (4, x, y, (r−y), q)) ∧ (pc = 4) ⇒ ((pc′, x′, y′, r′, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Formalized Mathematics
سال: 2008
ISSN: 1898-9934,1426-2630
DOI: 10.2478/v10037-008-0028-9